

*Subtask 3B1 under the Powertrain Materials Core Program (PMCP)

PI: Sebastien Dryepondt

Team: P. Nandwana, K.A. Unocic, L. Yousub, P. Fernandez-Zelaia, Y. Zhang, and R. Dehoff

Materials Science and Technology Division Oak Ridge National Laboratory

2020 DOE Vehicle Technologies Office Annual Merit Review, June 4, 2020

ORNL is managed by UT-Battelle, LLC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Context overview: VTO Powertrain Materials Core Program

Timeline

- Lab Call Award: July 2018
- Program Start: Oct 2018
- Program End: Sept 2023
- 30% Complete

Budget

• \$30M/5 years

Barriers to new alloys

- Higher power density, higher efficiency engines; resulting in increasingly extreme materials demands
- Cost of advanced engine materials
- Development time/cost of new materials
- Scaling new materials technologies to commercialization

	FY20 Program Research Thrusts	FY20 Budget	Partners	
	Thrust 1. Cost Effective Lightweight High Temp Engine Alloys	\$1.05M	ORNL	
	Thrust 2. Cost Effective Higher Temp Engine Alloys	\$1.525M	ORNL, PNNL	
>	Thrust 3. Additive Manufacturing of Powertrain Alloys	\$1.075M	ORNL	
	Thrust 4A. Advanced Characterization (supporting Thrusts 1-3)	\$1.025M	ORNL, PNNL, ANL	
	Thrust 4B. Advanced Computation (supporting Thrusts 1-3)	\$0.6M	ORNL	
AK	Thrust 5. Exploratory Research: Emerging Technologies	\$0.75M	ORNL, PNNL, ANL	

Overview: Subtask 3B1 - Fundamentals of Austenitic Alloys Via Additive Manufacturing (AM)

Timeline

- Project start: Oct 2018
- Project end: Sep 2023
- Percent complete: 30%

Barriers to AM of Austenitic Alloys

- Very few austenitic steels ready for AM
- No high temperature data for austenitic steel
- Cost and scaling barriers for AM
- Development time

Partners	FY20 Budget
Subtask3B1: Fundamentals of Austenitic Alloy Via Additive	
Manufacturing	\$200k
Thrust 4A: Advanced Characterization	\$30k
Thrust 4B: Advanced Computation	\$27k (FY19)

Relevance:

- AM allows for advanced design creating opportunities to improve component performance
- Significant gap of knowledge

cycles

- Specific thermal history
- Very fast cooling → unique microstructure, properties
- New alloys needed

FY20 Milestones

- Q1. Fabricate austenitic stainless steels by powder bed fusion (PBF) and binder jetting with high C content for operating temperature >650°C.

 COMPLETE
- Q4. **Submit manuscript** comparing the high temperature tensile and oxidation behaviors of austenitic steels fabricated by AM and conventional processing routes. **On target**

HK30Nb

Approach: AM parameter optimization: Design of Experiments + Fast high throughput screening

 Start with known 316L, then develop new high strength AM Austenitic Alloys

Thrust 4B: Adv. Comp. to predict phase formation and optimize

alloy composition

Finite element analysis (FEA)

- Thermodynamic
- Single laser track experiments
 - Fast screening of austenitic alloys
- Characterization
 - Microstructure (Subtask 4A: Adv.Char.)
 - Mechanical properties

Tech. Accomp.: Specific Microstructure of LPBF 316L Leads To Superior Ductility & Strength At Room Temperature

- Cell structure with high dislocation density results in high strength directly related to cell size
- Very few defects + grains slightly elongated along build direction

Tech. Accomp.: Progressive Decrease of Yield Strength and UTS with Increasing Testing Temperature

- structure stability?

Tech. Accomp.: Activities & a Key Result from Thrust 4B: Advanced Computation: Key tools: FEA & CALPHAD

Thermal cycle for both single track and actual build

Solidification phases HK30Nb (Scheil)

Tech. Accomp.: Single Track Experiments For Fast Screening of new AM Higher Temp. Austenitic Alloys of Varying Compositions

1 to 3 laser tracks, + variation of laser parameters around 316L std parameters

- No cracks observed
- Disappearance of large cast carbides
- Cell structure observed

Plates were machined from 7 different cast alloys (HK30Nb, CF8C+, CF8C+W/Cu, etc.) and inserted in Renishaw laser machine

TEM planned in FY20 to evaluate nano precipitates

Tech Accomp./(Milestone MET): New High-C Alloy, Similar Microstructure to 316L But Much Finer Cellular Structure

Alloy	Fe	Cr	Ni	Мо	Mn	С	Nb	Si
316L	66.9	16.9	11.9	2.6	1.1	0.008	0	0.43
HK30Nb	Bal.	25	21	0.3	0.2	0.22	1.3	1.1

Tech Accomp.: (via Subtask 4A: Adv. Char), Scanning Transmission Electron Microscopy (STEM) confirmed the presence of fine, <u>strengthening</u> NbC precipitates in the dislocation walls of the LPBF HK30Nb cellular structure

- Cr segregation/precipitates in the walls
- Elongated NbC and Cr-rich oxide at grain boundary

Tech Accomp. (Go/No go): LPBF HK30Nb Exhibits Superior Strength at 20-900°C Compared to Cast HK30Nb

- AM alloy: very high strength at 600-800°C
- Also, very good creep lifetime at 700-750°C

Responses to Previous Year Reviewer's comments

Project was not reviewed last year

Collaboration and Coordination with Other Institutions

- FY19. Thrust 4B Advanced Computation
 - Thermodynamic & Kinetic Computations
- FY20. Thrust 4A: Advanced Characterization
 - Scanning Transmission Electron Microscopy to understand Carbide Disappearance
- Seeking industrial collaboration

Future Research

- Generate mechanical property data on LPBF HK30Nb steel
 - Creep, oxidation, fatigue, toughness
- Fabrication of Carbonitride strengthened CF8C+ steel by LPBF
 - Custom made, high N powder was purchased
 - Parameters Optimization + Microstructure & properties characterization
 - Better understanding of precipitate/cellular interaction during fabrication, aging and creep testing
- Austenitic alloy design
 - Improve thermal cycle modeling and phase prediction
 - Develop selection method based on single-track experiments

Project Summary

- Successful additively manufactured commercial alloy HK30Nb
 - First time (known) for this alloy to be fabricated by AM.
 - High carbon austenitic steels can be fabricated by LPBF w/no cracking.
 - Very good creep strength due to fine carbides in microstructure.
 - There are likely mechanical properties advantages via AM.
- Design strategy
 - Project leverages an <u>Integrated computational materials engineering</u>
 (ICME) framework developed for cast aluminum alloys
 - Improving modeling tools
 - Single track experiments to alleviate the need for powder production
 - Key microstructure very refined compared to cast alloys
 - Dislocations cells offer route to design new alloys

Backup Slides

Challenges & Barriers

- Non-equilibrium solidification conditions
 - Thermodynamics are not consistent with alloy solidification due to high solidification rates. Need better predictive tools
 - Need better understanding of cell formation and precipitate interaction mechanisms to locally control and improve the alloy properties
- Reduce time to develop, fabricate and characterize new alloys
 - Powder processing; fabrication for new alloys is very time consuming
 - Need to advance our single-track experiments to accelerate alloy development/selection

Tech. BackUp: Increase of Strength for LPBF HK30Nb after 5h at 700 and 800°C.

- Cellular structure favors precipitate nucleation
- Precipitates stabilize the microstructure/pin dislocations at high temperature

